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Abstract
We report measurements of magnetoresistance in single-layer graphene as a function of gate
voltage (carrier density) at 250 mK. By examining signatures of weak localization (WL) and
universal conductance fluctuations (UCF), we find a consistent picture of phase coherence loss
due to electron–electron interactions. The gate dependence of the elastic scattering terms
suggests that the effect of trigonal warping, i.e. the nonlinearity of the dispersion curves, may
be strong at high carrier densities, while intra-valley scattering may dominate close to the Dirac
point. In addition, a decrease in UCF amplitude with decreasing carrier density can be
explained by a corresponding loss of phase coherence.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Studies of quantum interference are a key to understanding
decoherence processes and scattering mechanisms in meso-
scopic systems [1, 2]. Graphene provides a particularly
interesting subject for these studies because of its unique
band structure, which is characterized by two points of
valence band degeneracy (i.e. a ‘double-valley’ degeneracy)
(for recent reviews, see [3, 4]). States with momenta near
these degenerate points behave as chiral fermions; in this
case, the role of spin is taken by a ‘pseudospin’ which
arises from the two equivalent sublattices of graphene’s
honeycomb structure [5]. The pseudospin is parallel to the
momentum in one valley and anti-parallel to the momentum
in the other; thus, the two valleys host quasiparticles having
opposite chirality. It has recently been predicted [6] and
shown experimentally [7–10] that the effects of chirality allow
disordered single-layer graphene to demonstrate both weak
localization (WL) and weak anti-localization (WAL) [11].
Weak localization occurs in a phase-coherent conductor when
there is constructive interference between two time-reversed
electron paths. This enhances elastic backscattering and
is evident as a peak in magnetoresistance centered around
zero magnetic field. However, in graphene, intra-valley
backscattering is suppressed because it requires the pseudospin
to flip [12]. This suppression of backscattering reduces WL,

and in fact shows up as WAL, which is evident as a zero-field
dip in magnetoresistance [6]. Even though backscattering in
graphene is suppressed, it can still occur if there is scattering
off sharp defects: in this case intra- and inter-valley scattering
can occur and restore WL. In addition, at higher energies
the perfect alignment of the momentum and pseudospin is
broken by ‘trigonal warping’, or the asymmetric curvature of
the dispersion away from the Dirac point, so the WAL effects
should be reduced [6].

Previous work on WL in graphene has shown that
the phase coherence length, Lϕ , decreases with increasing
temperature or decreasing carrier density, likely due to the
effect of electron–electron interactions [7–10, 13]. Fits to
WAL have also been used to extract the elastic inter- and intra-
valley scattering lengths. However, the gate voltage trends
in elastic scattering were previously difficult to determine,
due to large scatter in the data and strong averaging over
the signals [9]. Universal conductance fluctuations—another
quantum interference effect that can be used to extract
Lϕ—have been seen previously in single-layer graphene,
though their gate voltage dependence has not been compared
quantitatively to WL results.

In this paper, we discuss magnetoresistance measurements
on single-layer graphene in the context of WL and UCF. Fits to
WL theory allow us to extract the carrier density dependence
of Lϕ , as well as the carrier density dependence of the inter-
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Figure 1. Graphene device characterization. (a) Longitudinal
resistance Rxx (solid curve) and the residual Rxy at B = 0 (solid
squares, data from (b)) as a function of Vg at 250 mK. Inset: optical
image of the measured device. (b) Hall resistance for different
backgate voltages, Vg (Vg varies from −40 to 40 V in steps of 10 V).
All data is taken at 250 mK. The slope of the Hall resistance is used
to determine the carrier density at each Vg. Inset: carrier density (in
units of 1012 cm−2) as a function of Vg. The positive carrier density
indicates that the carriers are holes. The linear fit in the inset shows
that the backgate-induced change in carrier density is
9.26 × 1010 cm−2 V−1, in good agreement with
7.19 × 1010 cm−2 V−1 estimated from the device’s geometric
capacitance [19, 20].

valley and intra-valley scattering terms. Our results seem
consistent with the predicted strengthening of trigonal warping
away from the Dirac point. The values of Lϕ extracted from
WL are compared to those obtained from autocorrelations of
UCF (which is not affected by the strength of elastic scattering)
to obtain a consistent picture of the phase coherence in the
system. We observe, and propose a mechanism for, a decrease
in UCF amplitude with decreasing carrier density, an effect that
had been seen previously in bi- and trilayer graphene but was
not well understood [14].

2. Sample preparation and measurements

Our graphene samples were mechanically exfoliated onto
highly doped Si substrates topped with 300 nm SiO2.

Figure 2. Longitudinal magnetoresistance and WL theory. Rxx (B) at
250 mK for different Vg (Vg varies from 50 to −5 V in steps of 5 V).
A WL peak near zero magnetic field is observed at all gate voltages.
Thin solid lines show the fit to the graphene WL theory proposed by
McCann et al [6]. The inset shows the blow-up view of the curves for
Vg = −5 and 0 V (the axis labels are the same as those on the
main plot).

The thickness was determined by Raman and atomic force
microscopy measurements. The electrodes were patterned
by conventional electron beam lithography and electron beam
evaporation of 3 nm Cr and 55 nm Au. The device shown
in the inset of figure 1(a) consists of six electrodes on a
piece of graphene, which allows measurements of longitudinal
resistance Rxx to determine 2D resistivity ρ and Hall resistance
Rxy to determine carrier density ns. All data presented in this
paper are taken with the device shown in the inset of figure 1(a)
(multiple samples showed similar effects, but only one was
measured in detail). The distance L between two longitudinal
electrodes and the minimum width W of the sample are 3.3
and 4.2 μm, respectively. Although the sample shape is
not an ideal Hall bar geometry, the data still seem valid, as
the overall longitudinal magnetoresistance has no slope (see
figure 2), indicating no mixing from ρxy ; similarly, the slope
of the Hall resistance does not seem to be affected by ρxx

(which only adds an offset and contributions from universal
conductance fluctuations). Measurements were performed in
a helium-3 cryostat using standard ac lock-in techniques: an
ac current was applied through two end electrodes and the
resulting longitudinal voltage or Hall voltage was recorded as
a function of gate voltage Vg (applied to the back of the doped
substrate) or magnetic field B .

3. Results and discussion

We determine the Dirac point using Rxx and Rxy as a function
of Vg. A linear fitting of Rxy versus B gives the carrier
density, via dRxy/dB = 1/nse (see figure 1(b)), where e is the
elementary charge. By extrapolating the carrier density versus
Vg plot to zero carrier density (see the inset of figure 1(b)),
we estimate the gate voltage at the Dirac point to be
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VDirac ∼ 64 V1. This value compares well to the turnover point
in a plot of Rxx as a function Vg, as can be seen in figure 1(a).
Also, as shown in figure 1(a), the gate voltage dependences of
Rxx and the residual Rxy at B = 0 match very well, indicating
the only effect related to the non-ideal Hall bar geometry in
the sample is a field-independent offset. The longitudinal
resistance is also used to determine the mobility μ through the
equation μ = 1/nsρ = L/ns Rxx W . At Vg = 0 (i.e. far from
the Dirac point), ns ∼ 5.9×1012 cm−2,μ ∼ 1660 cm2 V−1 s−1

and the diffusion constant D ∼ 235 cm2 s−1.
Figure 2 shows magnetoresistance Rxx (B) at different

gate voltages. For all gate voltages, the resistance drops
quickly when a small magnetic field is applied, resulting a
sharp peak near zero magnetic field. This behavior is consistent
with WL, showing that the carriers maintain their phase over
many elastic mean free paths in the graphene. As the hole
density decreases (i.e. as Vg increases and approaches VDirac),
the width of the WL peak increases, implying that the phase
coherence length Lϕ of the holes decreases. In figure 2 it
is also evident that at larger fields away from the WL peak
the resistance increases with increasing magnetic field. This
positive magnetoresistance becomes more pronounced near the
Dirac point.

The graphene magnetoresistance data can be analyzed in
terms of WL using the theory described by [6] to find the
resistance correction �ρ(B) = ρ(B)− ρ(0):

�ρ(B) = −e2ρ2

πh

[
F

(
B

Bϕ

)
− F

(
B

Bϕ + 2Biv

)

− 2F

(
B

Bϕ + Biv + B∗

)]
, (1)

where F(z) = ln z + ψ( 1
2 + 1

z ), ψ is the digamma function

and Bϕ,iv,∗ = h̄
4eD L−2

ϕ,iv,∗. Here, L iv is the elastic inter-valley
scattering length. The third term in equation (1) predicts WAL,
with L∗ related to the elastic intra-valley scattering length, Lz,
and trigonal warping length, Lw, through the relation L−2∗ =
L−2

w + L−2
z . From the scattering lengths we can extract the

scattering rates τ−1
ϕ,iv,∗ using the relation L2

ϕ,iv,∗ = Dτϕ,iv,∗.
Fits to equation (1) are plotted in figure 2 as thin solid curves.
The theory fits the data well with Lϕ , L iv and L∗ as three free
parameters. In figures 3(a) and (b) we plot these characteristic
lengths as a function of Vg. Lϕ is of the order of 1 μm,
while L iv and L∗ are of the order of 0.1 μm in hole-doped
states; because Lϕ � L iv, the inter-valley scattering can
act to restore the WL peak [9]. The decrease of Lϕ with
decreasing carrier density has been observed before [7, 9] and
was explained by electron–electron interactions, specifically
the inelastic Nyquist scattering of electrons off the fluctuating
electromagnetic fields generated by all other electrons [9, 15].
A similar decrease in Lϕ has also been seen as temperature
was raised2. In addition, the decrease of Lϕ near the Dirac
point may also be influenced by the formation of puddles of
different types of carriers [9, 16].

1 The device was unfortunately killed as we tried to sweep gate voltage above
Vg ∼ 68 V.
2 In general, Lϕ is expected to increase as temperature is lowered, while L∗
and L iv should be largely temperature-independent. Although our preliminary
data support this, the sample was unfortunately destroyed before systematic
temperature data could be obtained.

Figure 3. Characteristic lengths obtained from WL fitting of
longitudinal magnetoresistance in figure 2. (a) Phase coherence
length, Lϕ , as a function of Vg. The dotted line is the linear fit.
(b) Elastic scattering lengths as a function of Vg. The dashed line is a
linear fit of L∗ to demonstrate the trend of increasing length with Vg.
The dotted line shows trigonal warping Lw calculated from
equation (3). The dashed–dotted line is Lz obtained from
L−2

z = L−2
ϕ − L−2

w (using L∗ extracted from data and the calculated
Lw; for simplicity, Lz is assumed to be independent of gate voltage).

Figure 3(b) shows the intra-valley and inter-valley
scattering lengths, demonstrating the weak increase of L∗ and
L iv with decreasing hole density. This increase is expected for
L∗ due to the influence of trigonal warping length, Lw, which
should increase as the Fermi energy becomes close to the Dirac
point as [6]

L−2
w = τ−1

w

D
= 2τ0

D

(
με2

F

h̄v2
F

)2

, (2)

where τ0 is the momentum relation time, μ = γ0a2

8h̄2 is the
structure constant, γ0 ∼ 3 eV is the nearest-neighbor coupling
and a = 0.142 × √

3 nm is the lattice constant. The dotted
line in figure 3(b) shows a plot of equation (2). As can be
seen in the figure, at high carrier densities the calculated values
of Lw correspond closely to the extracted values of L∗. The
correspondence between fitted L∗ and calculated Lw at higher
carrier densities (Vg < 30 V) implies that trigonal warping is
the dominant chirality-breaking mechanism in this regime. At
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lower carrier densities the calculated Lw diverges; in this case,
the intra-valley scattering Lz (extracted as a dashed–dotted line
in figure 3(b)) likely gives a cutoff length to L∗ and dominates
the behavior. However, as the error estimation of L∗ shown in
figure 3(b) is larger than the Vg dependence of L∗, the effects
of the trigonal warping and the intra-valley scattering described
above may need more accurate measurements to verify. In
figure 3(b) it can also be seen that the inter-valley scattering
length L iv has weak gate voltage dependence, and seems to
track L∗. The cause of this behavior is unknown and may imply
that effects in addition to trigonal warping are influencing the
elastic scattering. In particular, it is possible that some of
the positive magnetoresistance (which is used to extract L∗
and L iv) is due to charge inhomogeneity in the system [17].
Although this effect should be less relevant than WL/WAL at
low temperatures, results on bilayer samples show that charge
inhomogeneity effects may increase with decreasing carrier
density [18].

Because the WL fits to Lϕ involve consideration of
elastic scattering terms, it is valuable to compare these results
to a method of obtaining Lϕ that does not involve other
scattering terms. To do this, we extract Lϕ from UCF.
UCF occurs in disordered, mesoscopic conductors where
the carrier transmission is due to interference of multiple,
complicated paths which accumulate a random phase when
a parameter such as magnetic field is tuned. The resultant
conductance fluctuations are reproducible and aperiodic, and
have amplitudes of order e2/h. UCF is evident in figure 2 as
B-field-dependent fluctuations of Rxx . We separate the UCF
from the WL signals by defining

Gfluc = R−1
xx,data − R−1

xx,WLfit . (3)

Figure 4(a) shows the UCF as a function of B for different
Vg, where the magnitude is of the order of e2/h. The
reproducibility of the fluctuations is shown in the inset
of figure 4(a); UCF from both the forward and backward
magnetoresistance sweeps are nearly indistinguishable. The
frequency and amplitude have a clear dependence on Vg (hole
density). We calculate the autocorrelation Gfluc(B)Gfluc(B +
�B) of each UCF curve to find the characteristic frequency Bc

and variance Gfluc,var = 〈(Gfluc − 〈Gfluc〉)2〉, where �B is the
magnetic field lag, Bc is the half-width at half-maximum of the
autocorrelation and Gfluc,var is the autocorrelation at �B = 0.
The extracted phase coherence length, Lϕ = (2.4h/eBc)

1/2, is
plotted in figure 4(b), while the root mean square fluctuation
amplitude, Gfluc,rms = (Gfluc,var)

1/2, is plotted in figure 4(c).
As can be seen in figure 4(b), Lϕ from the UCF analysis and
from the WL fitting agree well with each other, validating the
extracted values of Lϕ . The similar trend of Lϕ decreasing
with carrier density shows that the origins of the electron phase
breaking process is the same for both phenomena.

An unusual aspect of the UCF is the suppression of
fluctuations as Vg moves toward the Dirac point, as can be seen
in figures 4(a) and (c). Although this phenomenon has been
recently shown in bilayer and trilayer graphene [14], it has not
been reported before in single-layer devices. While the origin
of this suppression was not previously clear, it likely occurs
because Lϕ decreases in a device where Lϕ is smaller than the

Figure 4. UCF fluctuations Gfluc as a function of magnetic field B at
different Vg (Vg varies from −5 to 50 V in steps of 5 V). The data is
obtained by subtracting the solid-line fits from the data in figure 2.
An offset of 2e2/h is applied between adjacent curves for clarity.
Inset: Gfluc from both forward and backward magnetoresistance
sweeps for Vg = −5 V in figure 2(a) (red solid and blue dotted lines,
respectively), demonstrating that the UCF is reproducible.
(b) Comparison of Lϕ obtained from UCF (blue empty squares) and
WL (red solid squares) analyses of longitudinal magnetoresistance.
(c) UCF amplitude (root mean square of Gfluc,rms) versus Vg.

channel length. In this case, we follow the argument in [2],
which considers a 1D strip of the device (W < Lϕ , L > Lϕ)
as composed of N = L/Lϕ series resistors. The 1D strip
fluctuation amplitude is δg1D = N−3/2δg0 = (Lϕ/L)3/2δg0,
where δg0 ∼ e2/h is the fluctuation for each resistor. A 2D
conductor such as our sample (W > Lϕ , L > Lϕ) is composed
of N = LW/(Lϕ)2 squares, where each square has size (Lϕ)2

and fluctuation δg0. The entire sample then has fluctuation
amplitude δg2D = (W/L)N−1/2δg0 = Lϕ(W 1/2/L3/2)δg0.
The fluctuation amplitude should thus scale with Lϕ . As
can be seen by a comparison of figures 4(b) and (c), when
Lϕ decreases by a factor of two over 55 V, the fluctuation
amplitude decreases by about the same factor over the same
gate voltage range, consistent with expectations.

4. Summary

In summary, we have examined weak localization and
universal conductance fluctuations in single-layer graphene as
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a function of carrier density. The magnetoresistance curves
fit well to the predicted theory of WL/WAL in graphene.
UCF data was analyzed via autocorrelations to determine
the gate voltage dependence of the fluctuation frequency and
amplitude. The phase coherence lengths extracted from WL
and UCF correspond well, validating the fitting procedures for
both measurements and showing that the origins of the electron
phase-breaking process is the same for both phenomena. We
also explained a decrease in UCF amplitude with decreasing
carrier density as due to a corresponding loss of phase
coherence. From the WL data, we determined the gate
dependence of the elastic scattering terms and suggested that
the trigonal warping effect is strong at high carrier densities.
However, the similar gate trends of inter- and intra-valley
scattering may imply that positive magnetoresistance due to
charge inhomogeneity is also relevant.
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